Инструменты пользователя

Инструменты сайта


No renderer 'timeline' found for mode 'timeline'
спин

Спин

Спин (от англ. spin, буквально — вращение, вращать(-ся)) — собственный момент импульса элементарных частиц, имеющий квантовую природу и не связанный с перемещением частицы как целого. Спином называют также собственный момент импульса атомного ядра или атома; в этом случае спин определяется как векторная сумма (вычисленная по правилам сложения моментов в квантовой механике) спинов элементарных частиц, образующих систему, и орбитальных моментов этих частиц, обусловленных их движением внутри системы.

Спин измеряется в единицах ħ1) (приведённой постоянной Планка, или постоянной Дирака) и равен ħJ, где J — характерное для каждого сорта частиц целое (в том числе нулевое) или полуцелое положительное число — так называемое спиновое квантовое число, которое обычно называют просто спином (одно из квантовых чисел).

В связи с этим говорят о целом или полуцелом спине частицы.

Существование спина в системе тождественных взаимодействующих частиц является причиной нового квантовомеханического явления, не имеющего аналогии в классической механике: обменного взаимодействия.

Вектор спина является единственной величиной, характеризующей ориентацию частицы в квантовой механике2). Из этого положения следует, что: при нулевом спине у частицы не может существовать никаких векторных и тензорных характеристик; векторные свойства частиц могут описываться только аксиальными векторами; частицы могут иметь магнитные дипольные моменты и не могут иметь электрических дипольных моментов; частицы могут иметь электрический квадрупольный момент и не могут иметь магнитный квадрупольный момент; отличный от нуля квадрупольный момент возможен лишь у частиц при спине, не меньшем единицы3).

Спиновый момент электрона или другой элементарной частицы, однозначно отделённый от орбитального момента, никогда не может быть определён посредством опытов, к которым применимо классическое понятие траектории частицы4).

Число компонент волновой функции, описывающей элементарную частицу в квантовой механике, растёт с ростом спина элементарной частицы. Элементарные частицы со спином tex:{\displaystyle 0} описываются однокомпонентной волновой функцией (скаляр), со спином tex:{\frac {1}{2}} описываются двухкомпонентной волновой функцией (спинор), со спином tex:{1} описываются четырёхкомпонентной волновой функцией (вектор), со спином tex:{2} описываются шестикомпонентной волновой функцией (тензор)5).

Что такое спин — на примерах

Видеозапись лекции - что такое спин.

Хотя термин спин относится только к квантовым свойствам частиц, свойства некоторых циклически действующих макроскопических систем тоже могут быть описаны неким числом, которое показывает, на сколько частей нужно разделить цикл вращения некоего элемента системы, чтобы она вернулась в состояние, неотличимое от начального.

Самый простой пример спина — это целый спин равный 1:

если взять вектор (для примера — положить ручку на стол) и повернуть его на 360 градусов, то этот вектор вернётся в своё первоначальное состояние (ручка опять будет лежать так же, как и до поворота).

Также легко представить себе спин равный 0:

это точка — она со всех сторон выглядит одинаково, как её ни крути.

Ещё один пример объекта который требует поворота на 720 градусов для возврата в начальное положение.

Чуть сложнее с целым спином равным 2:

нужно будет придумать объект, который ведёт себя так же, как в предыдущем примере со спином 1, но при повороте на 180 градусов (то есть вдвое меньше полного оборота) — это тоже просто — нужно взять двунаправленный вектор (примером из жизни может служить обычный карандаш, только заточенный с двух сторон или не заточенный вообще — главное чтобы был без надписей и однотонный, Хокинг в качестве примера приводил обычную игральную карту типа короля или дамы6)) — и тогда после поворота на 180 градусов он вернется в положение, не отличимое от исходного.

А вот c полуцелым спином равным 1/2 уже придётся выходить в 3 измерения:

  • Если взять лист Мёбиуса и представить, что по нему ползет муравей, тогда, сделав один оборот (пройдя 360 градусов), муравей окажется в той же точке, но с другой стороны листа, а чтобы вернуться в точку, откуда он начал, придётся пройти все 720 градусов.
Четырёхтактный двигатель возвращается в исходное состояние при повороте коленчатого вала на 720 градусов, что является неким аналогом полуцелого спина
  • Еще один пример - четырехтактный двигатель внутреннего сгорания. При повороте коленчатого вала на 360 градусов поршень вернётся в исходное положение (например, верхнюю мёртвую точку), но распределительный вал вращается в 2 раза медленнее и совершит полный оборот при повороте коленчатого вала на 720 градусов. То есть при повороте колечатого вала на 2 оборота двигатель внутреннего сгорания вернется в то же состояние. В этом случае третьим измерением будет положение распределительного вала.

На подобных примерах можно проиллюстрировать сложение спинов:

  • Два заточенных только с одной стороны одинаковых карандаша («спин» каждого - 1), скреплённые друг с другом так, что острый конец одного будет рядом с тупым концом другого. Такая система вернётся в неотличимое от начального состояния при повороте всего на 180 градусов, то есть «спин» системы стал равным двум.
  • Многоцилиндровый четырёхтактный двигатель внутреннего сгорания («спин» каждого из цилиндров которого равен 1/2). Если все цилиндры работают одинаково, то состояния, при которых поршень находится в начале такта рабочего хода в любом из цилиндров, будут неотличимы. Следовательно, двухцилиндровый двигатель будет возвращаться в состояние, неотличимое от исходного, через каждые 360 градусов (суммарный «спин» - 1), четырехцилиндровый - через 180 градусов («спин» - 2), восьмицилиндровый - через 90 градусов («спин» - 4).

Свойства спина

Любая частица может обладать двумя видами углового момента: орбитальным угловым моментом и спином.

В отличие от орбитального углового момента, который порождается движением частицы в пространстве, спин не связан с движением в пространстве. Спин — это внутренняя, исключительно квантовая характеристика, которую нельзя объяснить в рамках релятивистской механики. Если представлять частицу (например, электрон) как вращающийся шарик, а спин как момент, связанный с этим вращением, то оказывается, что поперечная скорость движения оболочки частицы должна быть выше скорости света, что недопустимо с позиции релятивизма.

«В частности было бы совершенно бессмысленным представлять себе собственный момент элементарной частицы, как результат ее вращения „вокруг собственной оси“»Ландау Л. Д., Лифшиц Е. М. Теоретическая физика. том. III гл. VIII §54 Спин

Будучи одним из проявлений углового момента, спин в квантовой механике описывается векторным оператором спина tex:{\hat {\vec {s}}}, алгебра компонент которого полностью совпадает с алгеброй операторов орбитального углового момента tex:{\hat {\vec {\ell }}}. Однако, в отличие от орбитального углового момента, оператор спина не выражается через классические переменные, иными словами, это только квантовая величина. Следствием этого является тот факт, что спин (и его проекции на какую-либо ось) может принимать не только целые, но и полуцелые значения (в единицах постоянной Дирака ħ).

Спин испытывает квантовые флуктуации. В результате квантовых флуктуаций строго определённое значение может иметь только одна компонента спина, например tex:{J_{{z}}}. При этом компоненты tex:{J_{x},J_{y}} флуктуируют вокруг среднего значения. Максимально возможное значение компоненты tex:{J_{{z}}} равно tex:{J}. В то же время квадрат tex:{J^{2}} всего вектора спина равен tex:{J(J+1)}. Таким образом tex:{J_{x}^{2}+J_{y}^{2}=J^{2}-J_{z}^{2}\ge J}. При tex:{J={\frac {1}{2}}} среднеквадратические значения всех компонент из-за флуктуаций равны tex:{\widehat {J_{x}^{2}}}={\widehat {J_{y}^{2}}}={\widehat {J_{z}^{2}}}={\frac {1}{4}}.7)

Вектор спина меняет своё направление при преобразовании Лоренца. Ось этого поворота перпендикулярна импульсу частицы и относительной скорости систем отсчёта8).

Примеры

Ниже указаны спины некоторых микрочастиц.

спин общее название частиц примеры
0 скалярные частицы π-мезоны, K-мезоны, хиггсовский бозон, атомы и ядра 4He, чётно-чётные ядра, парапозитроний
1/2 спинорные частицы электрон, кварки, мюон, тау-лептон, нейтрино, протон, нейтрон, атомы и ядра 3He
1 векторные частицы фотон, глюон, W- и Z-бозоны, векторные мезоны, ортопозитроний
3/2 спин-векторные частицы Ω-гиперон, Δ-резонансы
2 тензорные частицы гравитон, тензорные мезоны

На июль 2004 года, максимальным спином среди известных барионов обладает барионный резонанс Δ(2950) со спином 15/2. Спин стабильных ядер не может превышать tex:{\frac {9}{2}}\hbar9).

История

В 1922 году опыт Штерна — Герлаха подтвердил наличие у атомов спина и факт пространственного квантования направления их магнитных моментов.

В 1924 году, ещё до точной формулировки квантовой механики, Вольфганг Паули вводит новую, двухкомпонентную внутреннюю степень свободы для описания валентного электрона в щелочных металлах. В 1927 году он же модифицирует недавно открытое уравнение Шрёдингера для учёта спиновой переменной. Модифицированное таким образом уравнение носит сейчас название уравнение Паули. При таком описании у электрона появляется новая спиновая часть волновой функции, которая описывается спинором — «вектором» в абстрактном (то есть не связанном прямо с обычным) двумерном спиновом пространстве.

В 1928 году Поль Дирак строит релятивистскую теорию спина и вводит уже четырёхкомпонентную величину — биспинор.

Математически теория спина оказалась очень прозрачной, и в дальнейшем по аналогии с ней была построена теория изоспина.

Спин и магнитный момент

Несмотря на то, что спин не связан с реальным вращением частицы, он тем не менее порождает определённый магнитный момент, а значит, приводит к дополнительному (по сравнению с классической электродинамикой) взаимодействию с магнитным полем. Отношение величины магнитного момента к величине спина называется гиромагнитным отношением, и, в отличие от орбитального углового момента, оно не равно магнетону (tex:{\mu _{0}}):

tex:{\hat {\vec {\mu }}}=g\cdot \mu _{0}{\hat {\vec {s}}}.Введённый здесь множитель g называется g-фактором частицы; значения этого g-фактора для различных элементарных частиц активно исследуются в физике элементарных частиц.

Спин и статистика

Вследствие того, что все элементарные частицы одного и того же сорта тождественны, волновая функция системы из нескольких одинаковых частиц должна быть либо симметричной (то есть не изменяется), либо антисимметричной (домножается на −1) относительно перестановки местами двух любых частиц. В первом случае говорят, что частицы подчиняются статистике Бозе — Эйнштейна и называются бозонами. Во втором случае частицы описываются статистикой Ферми — Дирака и называются фермионами.

Оказывается, именно значение спина частицы говорит о том, каковы будут эти симметрийные свойства. Сформулированная Вольфгангом Паули в 1940 году теорема о связи спина со статистикой утверждает, что частицы с целым спином (s = 0, 1, 2, …) являются бозонами, а частицы с полуцелым спином (s = 1/2, 3/2, …) — фермионами10).

Обобщение спина

Введение спина явилось удачным применением новой физической идеи: постулирование того, что существует пространство состояний, никак не связанных с перемещением частицы в обычном пространстве. Обобщение этой идеи в ядерной физике привело к понятию изотопического спина, который действует в особом изоспиновом пространстве. В дальнейшем, при описании сильных взаимодействий были введены внутреннее цветовое пространство и квантовое число «цвет» — более сложный аналог спина.

Спин классических систем

Понятие спина было введено в квантовой теории. Тем не менее, в релятивистской механике можно определить спин классической (не квантовой) системы как собственный момент импульса11). Классический спин является 4-вектором и определяется следующим образом:

  • tex:{S_{\nu }={\frac {1}{2}}\,\varepsilon _{\nu \alpha \beta \gamma }\,L^{\alpha \beta }\,U^{\gamma },}

где

  • tex:{L^{\alpha \beta }=\sum (x^{\alpha }p^{\beta }-x^{\beta }p^{\alpha })} — тензор полного момента импульса системы (суммирование проводится по всем частицам системы);
  • tex:{U^{\alpha }=P^{\alpha }/M} — суммарная 4-скорость системы, определяемая при помощи суммарного 4-импульса tex:{P^{\alpha }=\sum p^{\alpha }} и массы M системы;

В силу антисимметрии тензора Леви-Чивиты, 4-вектор спина всегда ортогонален к 4-скорости tex:{U^{\alpha }.} В системе отсчёта, в которой суммарный импульс системы равен нулю, пространственные компоненты спина совпадают с вектором момента импульса, а временная компонента равна нулю.

Именно поэтому спин называют собственным моментом импульса.

В квантовой теории поля это определение спина сохраняется. В качестве момента импульса и суммарного импульса выступают интегралы движения соответствующего поля. В результате процедуры вторичного квантования 4-вектор спина становится оператором с дискретными собственными значениями.

См. также

Литература

  • Физическая энциклопедия. Под ред. А. М. Прохорова. — М.: «Большая российская энциклопедия», 1994. — ISBN 5-85270-087-8.
  • Richard G. Milner A Short History of Spin (англ.) // Contribution to the XVth International Workshop on Polarized Sources, Targets, and Polarimetry. — Charlottesville, Virginia, USA, September 9-13, 2013. — arXiv:1311.5016.
  • Широков Ю.М., Юдин Н.П. Ядерная физика. — М.: Наука, 1972. — 672 с.
  • Ширков Д. В. Физика микромира. — М.: Советская энциклопедия, 1980. — 527 с.
  • Паули В. Общие принципы волновой механики. — М.: ОГИЗ, 1947. — 333 с.

Статьи

6)
STEPHEN HAWKING. A Brief History of Time from the Big Bang to Black Holes. — Space Time Publications. — Кэмбридж: Carl Sagan Interior Illustrations, 1998. — С. 232. — 232 с. — ISBN 978-5-367-00754-1.
11)
Вейнберг С. Гравитация и космология. — M.: Мир, 1975.
спин.txt · Последние изменения: 2017/02/02 16:32 (внешнее изменение)